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Introduction

Students do not enter the classroom as blank slates. In mathematics classes, research shows that
students can enter the classroom holding misconceptions that have the strong potential to derail
new learning (Brown, 1992; Chiu & Liu, 2004; Kendeou & van den Broek, 2005). This has
enormous implications for classroom instruction. The presence of student misconceptions suggests
teachers need to identify and target misconceptions and build up accurate conceptual knowledge
all while still providing students with enough instruction and practice on the wealth of procedural
skill that are required course components and likely targets of standardized testing. Researchers in
the domains of cognitive development and cognitive science have identified an instructional
technique which may be especially helpful in fitting all these needs: the use of worked example with
self-explanation prompts.

This research brief (1) introduces conceptual and procedural knowledge in the context of Algebra I
coursework; (2) provides examples of misconceptions and clarifies their negative outcomes; (3)
explains the structure of and evidence base behind worked example with self-explanation; and (4)
describes SERP-MSAN field site partnership work underway that will further advance the
development of classroom ready tools for Algebra teachers. The purpose of this research brief is to
lay the groundwork for readers to recognize the value of adopting teaching tools which incorporate
worked examples with self-explanation.

Algebra I Conceptual and procedural knowledge: Partners in Mind

There is consistent recommendation that teachers focus on concepts in mathematics. The National
Council of Teachers of Mathematics (2000) stresses the importance of conceptual understanding
for learning in math, and recommends alignment of facts and procedures with concepts to improve
student learning. More recently, the National Mathematics Advisory Panel (2008) recommended
helping students master both concepts and skills, and maintained that preparation for Algebra
requires simultaneous development of conceptual understanding and computational fluency, as
well as cultivation of students’ skill at solving problems. As an indicator of the level of emphasis
placed on conceptual understanding, the final report of the National Mathematics Advisory Panel
(2008) uses the words “concept” or “conceptual” 87 times in 120 pages; in comparison, the word
“procedure” or “procedural” is used fewer than 40 times.

Conceptual knowledge has been defined as “an integrated and functional grasp of mathematical
ideas” (National Research Council, 2001, p. 118). Consistent with this and other research on
learning in mathematics, conceptual knowledge can be viewed as recognizing and understanding
the important principles or features of a domain as well as interrelations or connections between
different pieces of knowledge in the domain (Carpenter, Franke, Jacobs, Fennema, & Empsom.
1998; Hiebert & Wearne, 1996; Rittle-Johnson & Star, 2007). In contrast, procedural knowledge is

1




the ability to carry out a series of actions in order to solve a problem (Hiebert, 1986; Rittle-Johnson,
Siegler, & Alibali, 2001). In short, procedural knowledge can be operationally defined as how to do
something, and conceptual knowledge as an understanding of what features in the task mean;
conceptual knowledge of those features collectively allows one to understand why the procedure is
appropriate for that task.

Though conceptual and procedural knowledge are often discussed as distinct entities, they do not
develop independently in mathematics and, in fact, lie on a continuum, which often makes them
hard to distinguish (Star, 2005; Rittle-Johnson & Siegler, 1998; Rittle-Johnson et al., 2001). This may
be especially difficult in Algebra, where many new procedures are taught over the course of the
year (e.g., solving equations, factoring, graphing lines, etc.). Given the nature of the content in
Algebra courses, items designed to measure conceptual knowledge may have elements that
resemble procedural tasks. However, the information extracted about students' knowledge is not
about their ability to carry out procedures. For example, one could give students the graph of a line
and ask them to find the slope (procedural knowledge), or one could give students the same graph
and ask them how the slope would change if the x and y intercepts were reversed (conceptual
knowledge). Similarly, one could provide a pair of fractions and ask students to add them
(procedural knowledge), or one could ask students to compare the sizes of the fractions and think
about what would happen if the numerators and denominators were reversed (conceptual).
Furthermore, one could show students an algebraic equation and ask them to solve it (procedural
knowledge), or one could ask whether that equation is equivalent (or has the same solution set) to
another equation (conceptual knowledge). Thus, even with the same stimulus for a problem, one
can acquire very different types of information about what students know by the way that one asks
them to think about the problem.

Misconceptions and their negative outcomes

For the past few decades, researchers in the fields of cognitive development and mathematics
education have maintained that students beginning Algebra do not fully understand important
concepts that teachers may expect them to have mastered from their elementary math and pre-
algebra courses. Within the domain of equation solving alone, a number of concerning
misconceptions have been identified, including that students believe that the equals sign is an
indicator of operations to be performed (Baroody & Ginsburg, 1983; Kieran, 1981; Knuth, Stephens,
McNeil, & Alibali, 2006), that negative signs represent only the subtraction operation and do not
modify terms (Vlassis, 2004), that subtraction is commutative (Warren, 2003), and that variables
cannot take on multiple values (Booth, 1984; Kiichemann, 1978; Knuth et al,, 2006). (See Figure 1
for examples of student misconceptions.) Unfortunately, for many students, these misconceptions
persist even after traditional classroom instruction on the relevant topic (Vlassis, 2004; Booth,
Koedinger, & Siegler, 2007).

(A) Equals

Sign Sddx

!
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(B) Negative State whether each of the following is equal to -4x + 3:
numbers

a. 4x+3 Yes ( No

b. 3-—-4x Yes ) No

c. 4x-3 Yes ) No

d 3+(4x) Yes) No

e. 3+4x Yes [ No
(C) Variables/ E o L L .
Like Terms State whether each of the following is an effective first step for simplifying

2d+7+5:

a. Combine 2d and 7 Yes,) No

b. Combine 2d and 5 Yes) No

c. Combine 7 and 5 Yes) No

d. Combine 2d, 7, and 5 Yes | No

Figure 1: Student misconceptions about three key algebraic concepts: (A) the equals sign, (B)
negative numbers, and (C) variables and like terms. In (A), the student correctly names the equals
sign, but then indicates that its only meaning is to show you where the answer goes.

In (B), the student correctly endorses items b and d, and correctly rejects a and e, but incorrectly
endorses 4x - 3 as equivalent to -4x + 3. In (C), the student indicates that combining any two of the
terms is an acceptable first step, even though the terms given in a and b are not like terms (in both
cases, one is a variable, and one is a constant).

How do these strange conceptions develop, and why are they so persistent? Misconceptions may
have been ingrained in students due to particularities in the nature of their arithmetic instruction
(Baroody & Ginsburg, 1983; Carpenter, Franke, & Levi, 2003; McNeil & Alibali, 2005). For example,
the misconception that the equals sign indicates where the answer goes is likely due, at least in
part, to the way math facts and early addition problems are presented by teachers and in textbooks.
Such problems are often presented vertically, with one number on top of the other, and then a solid
line between the addends and the answer. When students are given horizontally presented
problems, they are typically in a format such as 4 + 5 = 9, with numbers and operations appearing
to the left side of the equals sign, and the answer (or a blank space for the answer) on the right side;
students are rarely, if ever, exposed to other formats such as 9 =4 + 5 (Seo & Ginsburg, 2003) or 4 +
5=3+ 6 (McNeil et al, 2006). McNeil (2008) found that even having students practice simple
arithmetic problems in the typical format (4 + 5 = 9) as opposed to non-standard presentations (28
= 28) increased failure at mathematical equivalence problems (e.g., 3 +5 + 6 =__ + 6).Justimagine
how much exposure to misleading problem formats students have gotten before they reach their
Algebra 1 class, and how that might prompt them to approach algebraic equations!

As you might predict, these types of misconceptions are detrimental to students’ performance on
equation-solving tasks: students who hold misconceptions about critical features in algebraic
equations solve fewer problems correctly (Booth & Koedinger, 2008). Even more interesting, these
misconceptions are associated with the use of particular, related, but incorrect strategies when
students attempt to solve problems. For example, students who do not think of negative signs as
connected in any way to the subsequent numerical term often delete or move negatives within
equations or subtract a term from both sides of the equation to eliminate the term even when the
value in question is already negative; similarly, students who do not think of the equals sign as an
indicator of balance between the terms on either side often delete or move the equals sign, or
perform operations to only one side of the equation (Booth & Koedinger, 2008).
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More crucially, such misconceptions also hinder students’ learning of new material. Students who
begin an equation-solving lesson with misconceptions learn less from a typical algebra lesson than
students with more sound conceptual knowledge (Booth & Koedinger, 2008). Why might this be
the case? One reason is highly related to abundant research in science education which
demonstrates the importance of engaging and correcting students’ preconceptions about scientific
topics before presenting new information (Brown, 1992; Chiu & Liu, 2004). If these preconceptions
are not engaged, teachers are just attempting to pile more information on top of a flawed
foundation built on persistent misconceptions. In this case, students will not achieve full
comprehension of the new material (Kendeou & van den Broek, 2005); rather, they may reject the
new information that does not fit with their prior conception or try in vain to integrate the new
information into their flawed or immature conceptions, resulting in a confused understanding of
the content (Linn & Eylon, 2006). Further, struggling students may not correctly encode the
features of the equations they are presented by their teacher and their textbook (e.g., Booth &
Davenport, in preparation). How can students be expected to learn what the teacher intends if
they are not correctly viewing, let alone interpreting, the instructional materials? Eliminating
student misconceptions should be a critical goal for successful mathematics instruction.

While this goal seems straightforward, with a limited amount of previous classroom time, how can
teachers even hope to accomplish all of these goals? It would be nice if they were able to spend a
day, or even a week of their Algebra course on helping their students gain a deep understanding of
the equals sign, but doing so would prevent getting to the lessons on quadratics at the end of the
year. Teachers need ways of improving conceptual understanding without sacrificing attention to
procedural skills - and these ways need to easily incorporated into the many different algebra
curricula used in classrooms across the country.

Worked Examples with Self-Explanation

Fortunately, some such instructional techniques have already been identified by researchers in the
domains of cognitive development and cognitive science. One combination which may be especially
helpful is the use of worked examples with self-explanation prompts. Worked examples are just
what they sound like—examples of problems worked out for students to consider, rather than for
them to solve themselves (Sweller & Cooper, 1985). Replacing many of the problems in a practice
session with examples of how to solve a problem leads to the same amount of procedural learning
in less time (Zhu & Simon, 1987; Clark & Mayer, 2003), or increased learning and transfer of
knowledge in the same amount of time (Paas, 1992).

When studying worked examples, students should be prompted to explain them. Self-explanation
facilitates students in integrating new information with what they already know, and forces the
learner to make their new knowledge explicit (Chi, 2000; Roy & Chi, 2005). Typically, students are
shown a correct example and asked to explain why the solution is correct. However, explaining a
combination of correct and incorrect examples (i.e., explain why a common incorrect strategy is
wrong) can be even more beneficial than explaining correct examples alone (Siegler, 2002; Siegler
& Chen, 2008; Rittle-Johnson, 2006; Grosse & Renkl, 2007). Well-designed incorrect examples
anticipate common misconceptions that students may hold that would make solving a particular
type of problem difficult. For example, students may have a strategy that is perfectly good for some
problems (e.g., combine two terms by adding the numbers involved; 4x + 3x is 7x), but
misconceptions about the nature of variable vs. constant terms lead them to generalize this strategy
to other problems where it is not appropriate (e.g., 4x + 3 is not 7x). When students study and
explain incorrect examples, they directly confront these faulty concepts and are less likely to
acquire or maintain incorrect ways of thinking about problems (Siegler, 2002; Ohlsson, 1996).




If the goal is improving conceptual understanding without harming development of correct
procedures, the worked example/self-explanation approach meets that criterion. Many studies
have established the benefits for procedural knowledge of worked examples (e.g., Sweller & Cooper,
1985; Zhu & Simon, 1987), and the benefits for conceptual understanding of self-explanation (e.g.,
Chi, 2000). Further, recent studies have shown that comparison and explanation of multiple
correct examples (Rittle-Johnson & Star, 2009) or explanation of a combination of correct and
incorrect examples (Booth, Paré-Blagoev, & Koedinger, 2010) can lead to both improved conceptual
and procedural knowledge.

Making Worked Examples Work in the Classroom

Despite their recommendation for instructional use by the US Department of Education (Pashler et
al,, 2007), research-proven techniques (such as the worked example/self-explanation approach),
often fail to find their way into everyday classroom practices or textbooks. This may be because
education stakeholders do not believe that they will be useful in real-world classrooms, or perhaps
because they see them as incompatible with the set-up of typical American classrooms. However,
greater collaboration between teachers, education researchers, and textbook publishers may be
one way that true change can occur.

In 2006 a set of MSAN districts embarked on a partnership with the Strategic Education Research
Partnership (SERP) Institute. One SERP-MSAN Field Site project is the creation of strategically
designed Algebra I assignments that address student misconceptions and advance student learning.
The Algebra By Example materials created by this partnership interleave problems students must
solve with worked examples that require self-explanation. Although results from myriad
laboratory studies have been published demonstrating positive benefits of this and related
approaches, only two previous publications included studies that were conducted in an actual
classroom setting. The studies described consisted of single classroom lessons. In contrast, the
work undertaken by the SERP-MSAN partnership has taken place in more than 100 classrooms for
durations of one-month to one year. Through this effort we have been able to examine how to
implement this approach in real-world classrooms taking into account the heterogeneous
constraints of multiple school districts. Together, we have transformed the landscape of available
classroom based research knowledge in this area.

Based on what was learned during the first phase of the work which ran from 2008-2010, SERP
secured partnership funding from the Department of Education to create and test a bank of 40
Algebra I assignments which incorporate worked examples with self-explanation. The materials
under development include professional development supports. The final product of these labors
will be a fully manualized set of materials that are deeply grounded in decades of laboratory
studies, and which have been through multiple intensive reality checks in 8 different MSAN
districts. Consistent with SERP’s approach the materials will also be available digitally free of
charge.

One might say that the previous laboratory studies have provided much of the conceptual
knowledge necessary to justify the use of worked examples in classrooms. However, such studies
could never provide the procedural knowledge of how to use worked examples in the classroom. It
is taking the concerted efforts of everyone involved in the SERP-MSAN field-site work to accomplish
the goal of creating the combined conceptual and procedural knowledge necessary to create a body
of work that is research based and classroom ready.




References

Baroody, A. & Ginsburg, H. (1983). The effects of instruction on children’s understanding of the
equals sign. The Elementary School Journal, 84, 199-212.

Booth, ].L., & Davenport, ].L. (in preparation). The role of conceptual knowledge and encoding in
algebraic equation-solving

Booth, ].L., & Koedinger, K.R. (2008). Key misconceptions in algebraic problem solving. In B.C. Love,
K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th Annual Cognitive Science Society
(pp.571-576). Austin, TX: Cognitive Science Society.

Booth, ].L., Koedinger, K.R., & Siegler, R.S. (2007, August). The effect of prior conceptual knowledge
on procedural performance and learning in algebra. Poster presented at the 29th annual
meeting of the Cognitive Science Society in Nashville, TN.

Booth, ].L., Paré-Blagoev, ].E., & Koedinger, K.R. (2010, May). Transforming equation-solving
assignments to improve algebra learning: A collaboration with the SERP-MSAN partnership.
Paper presented at the annual meeting of the American Education Research Association,
Denver, CO.

Booth, L.R. (1984). Algebra: Children’s Strategies and Errors. Windsor, UK: NFER-Nelson.

Brown, D.E. (1992). Using examples and analogies to remediate misconceptions in physics: Factors
influencing conceptual change. Journal of Research in Science Teaching, 29, 17-34.

Carpenter, T.P., Franke, M.L., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic and
algebra in the elementary school. Portsmouth, NH: Heinemann.

Carpenter, T. P., Franke, M. L., Jacobs, V. R, Fennema, E., & Empson, S. B. (1998). A longitudinal
study of invention and understanding in children's multidigit addition and subtraction.
Journal for Research in Mathematics Education, 29(1), 3-20.

Chi, M.T.H. (2000) Self-explaining expository texts: The dual processes of generating inferences and
repairing mental models. In Glaser, R. (Ed.) Advances in Instructional Psychology, Mahwah, NJ:
Lawrence Erlbaum Associates, pp. 161-238.

Chiu, M.H., & Liu, ].W. (2004). Promoting fourth graders’ conceptual change of their understanding
of electric current via multiple analogies. Journal of Research in Science Teaching, 42, 429-464.

Clark, R. C., & Mayer, R. E. (2003). e-Learning and the Science of Instruction: Proven Guidelines for
Consumers and Designers of Multimedia Learning. San Francisco, California: Jossey-Bass.

Grosse, C.S. & Renkl], A. (2007). Finding and fixing errors in worked examples: Can this foster
learning outcomes? Learning & Instruction, 17, 617-634.

Hiebert, ]. (1986). Conceptual and Procedural Knowledge: The Case of Mathematics. Hillsdale, N.].:
Erlbaum.

Hiebert, ]. & Wearne, D. (1996). Instruction, understanding, and skill in multidigit addition and
subtraction. Cognition and Instruction, 14, 251-283.

Kendeou, P., & van den Broek, P. (2005). The effects of readers' misconceptions on comprehension
of scientific text. Journal of Educational Psychology, 97, 235-245.

Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in
Mathematics, 12, 317-326.

Knuth, E. ., Stephens, A. C., McNeil, N. M. & Alibali, M.W. (2006). Does understanding the equal sign
matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37,
297

Kiichemann, D. (1978). Children’s understanding of numerical variables. Mathematics in School, 7,
23-26.

Linn, M.C,, & Eylon, B. (2006). Science education: Integrating views of learning and instruction. In
P.A. Alexander & P.H. Winne (Eds.), Handbook of Educational Psychology (2nd ed., pp. 511-544).
Mahwah, NJ: Erlbaum.

McNeil, N. M. (2008). Limitations to teaching children 2 + 2 = 4: Typical arithmetic problems can
hinder learning of mathematical equivalence. Child Development, 79, 1524-1537.

McNeil, N. M,, & Alibali, M. W. (2005). Why won’t you change your mind? Knowledge of operational
patterns hinders learning and performance on equations. Child Development, 76, 883-899.

6




McNeil, N. M., Grandau, L., Knuth, E. ]., Alibali, M. W,, Stephens, A. S., Hattikudur, S., & Krill, D. E.
(2006). Middle-school students’ understanding of the equal sign: The books they read can’t
help. Cognition and Instruction, 24, 367-385.

National Council of Teachers of Mathematics (NCTM) (2000). Principles and standards for school
mathematics. Reston, VA: Author.

National Mathematics Advisory Panel. Foundations for Success: The Final Report of the National
Mathematics Advisory Panel, U.S. Department of Education: Washington, DC, 2008.

National Research Council. (2001). Adding it up: Helping children learn mathematics. ]. Kilpatrick,
J.0. Swafford, & B. Findell (Eds.). Washington DC: National Academy Press.

Ohlsson, S. (1996). Learning from error and the design of task environments. International Journal
of Educational Research, 25(5), 419-448.

Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A
cognitive-load approach. Journal of Educational Psychology, 84, 429-434.

Pashler, H., Bain, P., Bottge, B., Graesser, A., Koedinger, K., McDaniel, M., and Metcalfe, . (2007).
Organizing Instruction and Study to Improve Student Learning (NCER 2007-2004).
Washington, DC: National Center for Education Research, Institute of Education Sciences, U.S.
Department of Education.

Rittle-Johnson, B. (2006). Promoting transfer: Effects of self-explanation and direct instruction.
Child Development, 77, 1-29.

Rittle-Johnson, B. & Siegler, R.S. (1998). The relation between conceptual and procedural
knowledge in learning mathematics: A review. In C. Donlan (Ed.), The development of
mathematical skill (pp. 75-110). Hove, UK: Psychology Press.

Rittle-Johnson, B., Siegler, R.S., & Alibali, M.W. (2001). Developing conceptual understanding and
procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93,
346-362.

Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and
procedural knowledge? An experimental study on learning to solve equations. Journal of
Educational Psychology, 99(3), 561-574.

Rittle-Johnson, B. & Star, J. (2009). Compared to what? The effects of different comparisons on
conceptual knowledge and procedural flexibility for equation solving. Journal of Educational
Psychology, 101(3), 529-544.

Roy, M. & Chi, M.T.H. (2005). Self-explanation in a multi-media context. In R. Mayer (Ed.),
Cambridge Handbook of Multimedia Learning (pp. 271-286). Cambridge Press.

Seo, K.H., & Ginsburg, H. P. (2003). “You've got to carefully read the math sentence...”: Classroom
context and children’s interpretations of the equals sign. In A. ]. Baroody & A. Dowker (Eds.),
The Development of Arithmetic Concepts and Skills (pp. 161 - 187). Mahwah, NJ: Erlbaum.

Siegler, R.S. (2002). Microgenetic studies of self-explanations. In N. Granott & J. Parziale (Eds.),
Microdevelopment: Transition processes in development and learning (pp. 31-58). New York:
Cambridge University.

Siegler, R. S., & Chen, Z. (2008). Differentiation and integration: Guiding principles for analyzing
cognitive change. Developmental Science, 11, 433-448.

Star, J.R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics
Education, 36, 404-411.

Sweller, ]., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving
in learning algebra. Cognition and Instruction, 2, 59-89.

Vlassis J. (2004). Making sense of the minus sign or becoming flexible in *negativity. Faculté de
Psychologie et des Sciences de I’Education. Vol. 14 issue 5 g. 469- 484.

Warren, E. (2003). The role of arithmetic structure in the transition from arithmetic to algebra.
Mathematics Education Research Journal, 15, 122-137.

Zhuy, X., & Simon, H.A. (1987). Learning mathematics from examples and by doing. Cognition and
Instruction, 4, 137-166.




